一、一什么二什么
一清二白、
一干二净、
一清二楚、
一穷二白、
一石二鸟、
一真二实、
一物二名、
一来二往、
一差二错、
一台二绝、
一狠二狠、
一言二语、
一心二用、
一雷二闪、
一仆二主、
一石二鸟、
一二二一、
一化二放、
一林二虎、
一来二去、
一旗二枪、
一心二意、
一高二低、
一底二度、
一台二妙、
一齐二整、
二、一什么二什么的成语
一穷二白、一清二白、一清二楚、一干二净、一来二去。
一、一穷二白
白话释义:形容基础差,底子薄(穷,指工农业不发达;白,指文化科学水平不高)。
出处:《论十大关系》十:“我曾经说过,我们一为‘穷’,二为‘白’。‘穷’就是没有多少工业,农业也不发达。‘白’就是一张白纸,文化水平、科学水平都不高。”
朝代:近代
作者:毛泽东
二、一清二白
白话释义:比喻十分清白。亦比喻非常清楚。
出处:《劫后拾遗》四:“你还不相信我吗?我在这里混了这半年,素来一清二白。”
朝代:近代
作者:茅盾
三、一清二楚
白话释义:十分清楚、明白。
出处:《四世同堂》:“小顺儿样样事情都要闹个一清二楚,不然怎么能当好妈妈的保镖呢。”
朝代:近代
作者:老舍
四、一干二净
白话释义:形容十分彻底,一点儿也不剩。
出处:《镜花缘》:“他是‘一毛不拔’,我们是‘无毛不拔’,把他拔的一干二净,看他如何?”
朝代:清
作者:李汝珍
五、一来二去
白话释义:指互相交往、接触后渐渐产生某种情况:两家住在一个院子里,一来二去地大人孩子也都熟了。
出处:《红楼梦》第五十八回:“一来二去,两个人就装糊涂了,倒象真的一样儿。”
朝代:清
作者:曹雪
三、为什么1加1等于2?
当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想。
那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。
有人对33*108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。
世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它靠近。
1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。
关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。
要能证明,这个猜想也就解决了。 然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。
故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。
所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+。
四、二的成语有哪些
你用我给你的网址,想找到什么字的成语,请自助。以后就不用问了。
不管三七二十一 不二法门 不擒二毛 丁一卯二 丁一确二
独一无二 二把刀 二八佳人 二分明月 二惠竞爽
二虎相斗,必有一伤 二龙戏珠 二人同心,其利断金 二三其德 二三其意
二竖为虐 二桃杀三士 二心两意 二姓之好 二一添作五
寡二少双 贵贱无二 国无二君 毫无二致 划一不二
金钗十二 接二连三 君命无二 九牛二虎之力 家无二主
两面二舌 器二不匮 七十二行 十二金牌 识二五而不知十
三平二满 誓死不二 三心二意 三下五除二 说一不二
数一数二 说一是一,说二是二 三占从二 天无二日 闻一知二
心无二用 一不做,二不休 一差二错 一佛出世,二佛涅盘 一分为二
一干二净 一客不烦二主 一来二去 一雷二闪 一清二白
一穷二白 一石二鸟 一身而二任 有死无二 一退六二五
言无二价 有一无二 知其一,不知其二 只知其一,不知其二
参考资料:
五、为什么1加1等于2
是不是所有的大于2的偶数,都可以表示为两个素数的呢? 这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。
同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。
奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”
(引自《哥德巴赫猜想与潘承洞》) 哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。
直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
到了20世纪20年代,有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。 1920年,挪威的布朗(Brun)证明了 “9+9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”。 1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。 1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”。 1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数。
1956年,中国的王元证明了 “3+4 ”。 1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”, 中国的王元证明了“1+4 ”。 1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”。
1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)
]。 其中“s + t ”问题是指: s个质数的乘积 与t个质数的乘积之和 20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。
解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。 由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。
但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
还有种说法是:1+1=2是可以证明的,当然这不是所谓的歌德巴赫猜想, 证明1+1=2要用到皮亚诺公理 【皮亚诺公理】 皮亚诺(Peano,1858—1932)系意大利数学家,他提出五条自然数的性质,通常把这五条性质叫做自然数的皮亚诺公理。 (1)“1”是自然数; (2)每一个确定的自然数a,都有一个确定的后继数a′,a′也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等); (3)如果b、c都是自然数a的后继数,那么b=c; (4)1不是任何自然数的后继数; (5)任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n′也真,那么,命题对所有自然数都真。
证明: 1+1的后继数是1的后继数的后继数,既是3 2的后继数是3 根据皮亚诺公理(4) 可得:1+1=2。
六、为什么1+1等于2
11+1=2 。
21+1=王。31滴水+1滴水=1滴水。
1+1=3一个男人加一个女人等于3个人《还有一个小孩》1+1=8一天加一个星期等于8天1+1=29/30/31一个月加一天。 检举 回答人的补充 2009-11-14 17:16 1+1=2当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想。
那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想: (a)任何一个≥6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。
有人对33*108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。
世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它靠近。
1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。
关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。
要能证明,这个猜想也就解决了。 然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。
故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1 与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。
所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。
-
日照好玩的地方和吃海鲜应该去哪听说日
日照好玩的地方:万平口:"旅游来日照,必到万平口",已成为各地游客的共识。刘家湾赶海园:以赶海系列活动为主,集旅游、休闲、度假、民俗、健身于一体的综合旅游园。竹洞天:位于山东省日照市城区西端的将帅沟毛竹…
-
什么是铸造
铸造是指将室温中为液态,但不久后将要固态化的物质倒入特定形状的铸模待其凝固成形的加工方式。 被铸物质多半原为固态但加热至液态的金属(例:铜、铁、铝、锡、铅等),而铸模的材料可以是沙、金属甚至陶瓷。 因应…
-
变形金刚中博派和狂派各有哪些人物
博派:擎天柱,铁皮,大黄蜂,爵士,棘齿。狂派:威震天,红蜘蛛,眩晕,吵闹,萨克,碎骨魔,路障,迷乱。…
-
一平方毫米的铜线能过多少安的电流
1平方毫米的铜线在不同电流下通过的安培数不同。最大是18A:(1)60A以下,选1平方毫米的铜线安全载流量是6A;(2)60~100A,选1平方毫米的铜线,安全载流量是5A;(3)100A以上,选1平方毫米的铜线,安全载流量是2.5A 。…
-
中华人民共和国城乡规划法第四十条有规
自2008年1月1日起施行的《中华人民共和国城乡规划法》第四十条:在城市、镇规划区内进行建筑物、构筑物、道路、管线和其他工程建设的,建设单位或者个人应当向城市、县人民政府城乡规划主管部门或者省、自治区、直辖…