黄金分割〔GoldenSection〕是一种数学上的比例关系。
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
应用时一般取1.618,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。
德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。
黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。
最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
|..........a...........|
+-------------+--------+-
|||.
|||.
|B|A|b
|||.
|||.
|||.
+-------------+--------+-
|......b......|..a-b...|
通常用希腊字母表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。
例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为根号5+1/2
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。
线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。
所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。
而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。
这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。
虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。
经考证。
欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
-
日照好玩的地方和吃海鲜应该去哪听说日
日照好玩的地方:万平口:"旅游来日照,必到万平口",已成为各地游客的共识。刘家湾赶海园:以赶海系列活动为主,集旅游、休闲、度假、民俗、健身于一体的综合旅游园。竹洞天:位于山东省日照市城区西端的将帅沟毛竹…
-
什么是铸造
铸造是指将室温中为液态,但不久后将要固态化的物质倒入特定形状的铸模待其凝固成形的加工方式。 被铸物质多半原为固态但加热至液态的金属(例:铜、铁、铝、锡、铅等),而铸模的材料可以是沙、金属甚至陶瓷。 因应…
-
变形金刚中博派和狂派各有哪些人物
博派:擎天柱,铁皮,大黄蜂,爵士,棘齿。狂派:威震天,红蜘蛛,眩晕,吵闹,萨克,碎骨魔,路障,迷乱。…
-
一平方毫米的铜线能过多少安的电流
1平方毫米的铜线在不同电流下通过的安培数不同。最大是18A:(1)60A以下,选1平方毫米的铜线安全载流量是6A;(2)60~100A,选1平方毫米的铜线,安全载流量是5A;(3)100A以上,选1平方毫米的铜线,安全载流量是2.5A 。…
-
中华人民共和国城乡规划法第四十条有规
自2008年1月1日起施行的《中华人民共和国城乡规划法》第四十条:在城市、镇规划区内进行建筑物、构筑物、道路、管线和其他工程建设的,建设单位或者个人应当向城市、县人民政府城乡规划主管部门或者省、自治区、直辖…